Seismic Probe: P-wave Tripllication

KEY POINTS

- Short-period seismic array data are sensitivity to short-scale heterogeneities in the upper mantle.
- Mapped heterogeneities may be related to the complex tectonic history beneath North of Australia, since they are mapped in the general region of past or present subduction.
- Several uncertainties exist, such as confidence level of the reference phase, dependence of results on the reference model, and uncertainties in slowness and back azimuth calculation.
- The MIT08 model is shown in the background.

ARRIVAL PROCESSING METHODS

SCATTERER LOCATIONS

For each fault, we drew slowness (s), travel time (t), and back-azimuth (\(\alpha\)) relative to the first arrival, which is given PREM's slowness. This information evaluates a back-projection scheme for the scattering layer (see Fig. H, below). In particular, if \(s-a\), and \(t\), we confirm identification of the master, scatterers, and BAZ traces, choosing later arrivals with amplitude \(\geq 0.35\), and time \(|t| > 294.1\) [Fig. J]. The back-azimuth of the signals gotten from FK scheme and black line shows the back-azimuth of the great circle arc between earthquake and WRA. Theoretical times and back azimuths of all predicted upper mantle arrivals for PREM model are shown as stars.

Master trace panel: Maximum amplitude of the signal obtained from different slowness windows is marked time series (Rost et al., 2006).

Stern losses trace panel: Amplitude associated with the maximum amplitudes used in the master trace and are shown as stars. Black line shows the back-azimuth of the great circle arc between earthquake and WRA. Theoretical times and back azimuths of all predicted upper mantle arrivals for PREM model are shown as stars.

Traces are aligned in time by earthquake origin time.

Earthquake distribution, color-coded for event depth, for all data. The starts show the arrivals separately.

Our next step will be a full waveform migration of these data.

REFERENCES